domingo, 16 de octubre de 2011

Biologia tercer periodo

Evolucion Geologica


EVOLUCION  GEOLOGICA: predominaron laerosión y la sedimentación.era arcaica oPrecámbrico (4000-600 millones de años atrás)emergió del mar una banda arqueada de noroeste a sureste, formada por pizarrasy gneis, que ocupaba casi la totalidad de la Galiciaactual. Además, también se originaron elevaciones en algunos puntos aisladosdel Sistema Central y losMontes deToledo. Más tarde, este macizo fue arrasado por la erosión y prácticamentecubierto por los mares paleozoicos.era primaria oPaleozoico (600-225 millones de años) tuvolugar laorogénesis herciniana. Delagua del mar que cubría la mayor parte de la Península surgieron lascordilleras hercinianas, compuestas de materiales como el granito,la pizarray la cuarcita.Al oeste se elevó el Macizo Hespérico, erosionado durante la misma era primariay convertido en un zócalo inclinado hacia el mar Mediterráneo. Al noroestesurgieron los macizos de Aquitania, Catalano-Balear y del Ebro; y, al suroeste,el Macizo Bético-Rifeño. Todos ellos también fueron arrasados por la erosióndurante el paleozoico y convertidos en zócalos o mesetas. Estaban formados porpizarra y neis. era secundariaoMesozoico (225-68 millones de años) fue un periodo de calma en el que reinaronla erosión y sedimentación del relieve. Continuó el arrasamiento de lascordilleras hercinianas. La inclinación del zócalo de la meseta hacia elMediterráneo provocó una profunda penetración del mar, que depositó en su bordeoriental una cobertera de materiales sedimentarios plásticos (calizaareniscamarga).Además se depositaron grandes cantidades de sedimentos en fosas marinassituadas en las actuales zonas pirenaica y bética.La era terciaria(68-1,7 millones de años) fue el periodo en el que tuvo lugar la orogénesis alpina. A consecuencia deella: Se levantaron las cordillerasalpinas, al plegarse los materiales depositados en las fosas bética ypirenaica entre los antiguos macizos que actuaron como topes. Se originaron losPirineosentre los macizos de Aquitania, Hespérico y del Ebro (que se hundió), y las cordilleras Béticas, entre los macizosBético-Rifeño y el Hespérico.Se formaronlas depresiones prealpinas entre las nuevas cordilleras y el macizo antiguo:la depresión del Ebro,paralela a los Pirineos y la depresión del Guadalquivir,paralela al Sistema Bético.La Meseta Central también se vio afectada por la orogénesis alpina. Se inclinó haciaelAtlántico,determinando la orientación hacia este océano de la mayoría de los ríospeninsulares. A partir de la orogénesisalpina se estableció la red fluvialDurante la eracuaternaria (1,7 millones de años, hasta la actualidad) seprodujeron el glaciarismo y la formación de terrazas fluviales. El glaciarismoafectó a las cordilleras más elevadas, dando lugar a glaciares de circo yde valle.El periodo posglaciar se caracterizó por la formación de terrazasfluviales, antiguos llanos de inundación abandonados por el posteriorencajamiento del río. Las terrazas son originadas dadas las alternanciasclimáticas de la era cuaternaria.

Formacion DE La Tierra




El Planeta Tierra es parte de un sistema planetario denominado Sistema Solar. Así, el origen de cada uno de los planetas que forman este sistema debe relacionarse con algunos eventos de trascendencia mayor.
Para explicar fenómenos de tanta envergadura como el origen del Sistema Solar o de cada uno de los planetas, siempre se encuentran hipótesis (afirmaciones basadas en conocimiento previo que explican un fenómeno) alternativas.
Una de las hipótesis más aceptadas sobre el origen del. Sistema Solar (sol y planetas) es la conocida teoría del Big-Bang o "hipótesis nebular".
En síntesis, y en forma muy simplificada, esta hipótesis sostiene que en "algún tiempo" anterior a unos 4.500 millones de años atrás el Sistema Solar en formación, no era sino que una "nebulosa" de polvo cósmico y gases. Dicha nebulosa se habría formado producto de la explosión (Big-Bang) de una supernova (técnicamente una supernova ocurre cuando una estrella particular quema su material nuclear, de modo que su fuerza gravitacional deja de ser balanceada por la energía nuclear).
Es posible que el inicio del Sistema Solar haya ocurrido a continuación de tal explosión (el planeta Tierra es, así, uno de los productos de la muerte de una gran estrella).
Habiéndose formado la "nebulosa" producto de la explosión del Big-Bang, necesariamente se inicia un proceso de contracción del polvo cósmico y gases, producto de la fuerza gravitacional de las partículas. Así, es posible pensar que comienza la formación de "masas centrales" o nacimiento del Sistema Solar y de los planetas.
Formación de la Vida
Los primeros seres vivos aparecidos en ese planeta Tierra así formado fueron organismos procariontes (no contienen membranas internas que separen al núcleo del citoplasma) durante una época primitiva (4.600 a 2.600 millones de años atrás) de la tierra cuando la atmósfera no tenía oxígeno o cuando la concentración de éste era muy reducida.
Los eucariones (tienen separado el núcleo del citoplasma) se originaron de algún tipo de procarionte durante un tiempo (2.500 millones de años atrás) en el que el contenido de oxígeno de la atmósfera era alto y estable.
Hacia el Pre-cámbrico temprano, 3.000 millones de años atrás se deben haber encontrado las primeras células vivas. Presumiblemente eran pequeñas, esferoidales, anaeróbicas y procariontes. Probablemente fueron organismos similares a las bacterias del tipo clostridium que vivían en ambientes acuáticos rodeados de moléculas orgánicas que facilitan los procesos de fermentación. No existen fósiles por razones obvias: La atmósfera no poseía capa de ozono y a la tierra llegaba una gran cantidad de radiación solar ultravioleta.
Hacia 670 millones de años atrás se encuentran los primeros fósiles de animales que corresponden a animales de cuerpos blandos (gusanos).

Caminos Evolutivos

En nuestro planeta la vida comenzó en los océanos hace unos cuatro mil millones de años cuando se formaron las primeras moléculas con las propiedades que se le asignan a la materia viva (ver ‘El origen de la vida, Ciencia Hoy, Vol. 3 N° 17: 58-64, 1992). Cuando entre estas moléculas apareció la clorofila, se tornó posible aprovechar la energía de la radiación solar para formar azúcares a partir del agua y del dióxido de carbono de la atmósfera mediante el proceso llamado fotosíntesis, durante el cual también se libera oxígeno a la atmósfera (ver ‘Agua, carbono, luz y vida, Ciencia Hoy, Vol. 5 N° 27: 41-55, 1994). Los azúcares permitieron que las primeras células vegetales engrosaran su membrana y acumularan reservas alimenticias. Estas células fueron las antecesoras de las algas y de todas las plantas verdes. El oxígeno generado por la fotosíntesis actuó como veneno para los seres más primitivos que cubrían sus necesidades de energía mediante la fermentación (proceso que transcurre en ausencia de oxígeno) los que para sobrevivir se refugiaron en medios no oxigenados, como el cieno del fondo de ríos, lagos y mares, donde permanecen todavía. Solo las algas verdes poseen clorofila la que es mucho más estable que los pigmentos de las algas pardas y rojas. Por eso únicamente las primeras pudieron generar descendientes que fueron los ancestros de todas las plantas terrestres mientras que las algas pardas y las rojas sobrevivieron restringiéndose a medios a los que no llega la radiación solar.

Las primeras plantas con hojas fueron los musgos a los que la evidencia fósil asigna un origen muy antiguo. Los musgos no evolucionaron, no se adaptaron a la vida aérea y si bien poseen lignina (componente esencial de la madera a la que le proporciona su rigidez), no supieron utilizarla. Los musgos, junto a las coníferas y las plantas con flores, constituyen la primera civilización vegetal que abandonó el medio marino para conquistar la tierra. Las primeras plantas que ‘aprendieron’ a aprovechar la madera fueron los helechos, los que constituyeron así la primera gran civilización vegetal adaptada a la vida terrestre. Hace cuatrocientos millones de años, después de una terrible sequía que asoló la tierra, surgieron las primeras plantas erectas como la Rhinia. Las primeras plantas provistas de madera proliferaron en la Era Primaria inicialmente como hierbas y luego como árboles cada vez más grandes, que formaron los enormes bosques del Carbonífero, desaparecidos en la actualidad transformados en los yacimientos de hulla. Estos yacimientos indican la existencia de inmensos bosques pantanosos, constituidos por equisetos gigantes (de los que actualmente solo quedan algunas especies), helechos con semilla y árboles con óvulos primitivos que, surgiendo de los pantanos, formaban un extraño paisaje vegetal. Helechos, equisetos y selaginelas (plantas con notoria separación de sexos) pertenecen a tres grandes líneas vegetales que desde el comienzo de la Era Primaria han evolucionado paralelamente. Esa evolución concluyó con el desarrollo, hace unos trescientos millones de años del óvulo, un nuevo órgano propio de las plantas con semilla. La semilla es un óvulo fecundado, donde se desarrolla el embrión, este permanece en un estado de vida latente; acumula reservas de alimentos para reanudar su crecimiento en el momento de su germinación.

Se acepta que la formación de metabolitos secundarios, o de productos del metabolismo especial, mencionado en el texto central como principal fuente de sustancias con efectos biológicos, se produjo a partir de la aparición de las plantas con óvulos y que su máxima expresión se logró con las Angiospermas (plantas con flores), cuya aparición en el curso de la evolución es muy posterior a la de las plantas con óvulos.

Biologia Segundo Periodo

Adaptacion
.

Que Es Adaptacion?
En sentido familiar, las adaptaciones son aquellos aspectos llamativos del mundo de los seres vivos, que como Darwin señaló acertadamente “con razón provocan nuestra admiración”. Los organismos y todas sus partes tienen un sentido de intencionalidad, una complejidad muy organizada, precisión y eficacia, y una ingeniosa utilidad.

Uno de los ejemplos favoritos de Darwin era el pico y la lengua del pájaro carpintero, magníficamente ideados para extraer los insectos enterrados en la corteza de los árboles, y los no menos impresionantes mecanismos del cerebro y de la conducta, que aseguran que la víctima obtenida con tanta dificultad es del agrado del pájaro carpintero. O asombrarnos ante las llamadas de peligro de algunos monos, que son diferentes dependiendo de si el depredador es una pitón, un águila, o un leopardo, con respuestas distintas de los que las reciben, que miran hacia abajo, arriba, o corren hacia los árboles. O contrastar el sutil moteado de un insecto camuflado, con los colores llamativos de especies estrechamente relacionadas que mimetiza la librea de un grupo de animales nocivos. O pensar en la sensatez de la hembra urogallo rechazando pretendientes que tienen cicatrices visibles de parásitos, y de las hembras de ratón que prefieren el olor de los machos sin parásitos. O en la legra del pene de un caballito del diablo, hábilmente concebido para desplazar el esperma rival antes de que el propietario lo deposite. O en las increíbles condiciones ambientales de los montículos de las termitas, que mantienen una temperatura constante a pesar de los días calurosos y noches heladas de la sabana. O en las orquídeas que atraen polinizadores por su increíble parecido a las abejas hembra dejando su polen sobre el dorso de su defraudado visitante.
3. CÓMO SE PRODUCE LA ADAPTACIÓN: SELECCIÓN NATURAL 
Darwin consideró de forma acertada la adaptación como el problema central que tenía que resolver cualquier teoría de la evolución. Y su teoría de la selección natural lo conseguía con creces. Para ésta, la adaptación se produce a través de la selección natural, gradualmente, de forma acumulativa, ajustadas por fuerzas selectivas en ambientes que han cambiado durante millones de años.
3.1. Fenotipos ampliados  Los efectos fenotípicos de los genes no se limitan al cuerpo, cerebro o pensamiento de los organismos que albergan el gen. Estos pueden extenderse más allá del organismo. Pensemos en el comportamiento paralizado de un pájaro que anida o de una araña que teje su tela, de los genes en los cucos manipulando a sus padres embaucados; en los de anfípodos (criaturas del tipo de los camarones), que se vuelven muy llamativos para los depredadores y constituyen el siguiente paso en el ciclo vital de sus parásitos, conducta fatal para ellos pero muy buena para el parásito.

Evolucion


La evolución biológica es el conjunto de transformaciones o cambios a través del tiempo que ha originado la diversidad de formas de vida que existen sobre la Tierra a partir de un antepasado común.1 La palabra evolución para describir tales cambios fue aplicada por vez primera en el siglo XVIII por el biólogo suizo Charles Bonnet en su obraConsideration sur les corps organisés.2 3 No obstante, el concepto de que la vida en la Tierra evolucionó a partir de un ancestro común ya había sido formulado por varios filósofos griegos,4 y la hipótesis de que las especies se transforman continuamente fue postulada por numerosos científicos de los siglos XVIII y XIX, a los cuales Charles Darwin citó en el primer capítulo de su libro El origen de las especies.5 Sin embargo, fue el propio Darwin, en 1859,6quien sintetizó un cuerpo coherente de observaciones que consolidaron el concepto de la evolución biológica en una verdadera teoría científica.1
La evolución como una propiedad inherente a los seres vivos ya no es materia de debate entre los científicos.1 Los mecanismos que explican la transformación y diversificación de las especies, en cambio, se hallan todavía bajo intensa investigación. Dos naturalistas, Charles Darwin y Alfred Russel Wallace, propusieron en forma independiente en 1858 que la selección natural es el mecanismo básico responsable del origen de nuevas variantes fenotípicas y, en última instancia, de nuevas especies.7 8 Actualmente, la teoría de la evolución combina las propuestas de Darwin y Wallace con las leyes de Mendel y otros avances posteriores en la genética; por eso se la denomina síntesis moderna o «teoría sintética».1 Según esta teoría, la evolución se define como un cambio en la frecuencia de los alelosde una población a lo largo de las generaciones. Este cambio puede ser causado por diferentes mecanismos, tales como la selección natural, la deriva genética, la mutación y la migración o flujo genético. La teoría sintética recibe en la actualidad una aceptación general de la comunidad científica, aunque también algunas críticas. Ha sido enriquecida desde su formulación, en torno a 1940, gracias a los avances de otras disciplinas relacionadas, como la biología molecular, la genética del desarrollo o la paleontología.9 De hecho, las teorías de la evolución, o sea, los sistemas de hipótesis basadas en datos empíricos tomados sobre organismos vivos para explicar detalladamente los mecanismos del cambio evolutivo, continúan siendo formuladas.10 11

Genetica Molecular


La genética molecular (no confundir con la biología molecular) es el campo de la biología que estudia la estructura y la función de los genes a nivel molecular. La genética molecular emplea los métodos de la genética y la biología molecular.
Se denomina de esta forma para diferenciarla de otras ramas de la genética como la ecología genética y la genética de poblaciones. Un área importante dentro de la genética molecular es el uso de la información molecular para determinar los patrones de descendencia y por tanto, la correcta clasificación científica de los organismos, lo que se denomina sistemática molecular, mientras que al establecimiento de relaciones de parentesco se llama filogenia molecular lo cual se diferencia con el método de genes que aparecen en el mundo y el universo.

Biologia Primer Periodo

Características humanas



La genética humana describe el estudio de la herencia biológica en los seres humanos. La genética humana abarca una variedad de campos incluidos: la genética clásicacitogenéticagenética molecularbiología moleculargenómicagenética de poblacionesgenética del desarrollogenética médica y el asesoramiento genético. El estudio de la genética humana puede ser útil ya que puede responder preguntas acerca de la naturaleza humana, comprender el desarrollo eficaz para el tratamiento de enfermedades y la genética de la vida humana. Este artículo describe sólo características básicas de la genética humana; para la genética de los trastornos ver: genética médica.

La herencia de los rasgos para los seres humanos se basan en el modelo de herencia de Gregor Mendel. Mendel deduce que la herencia depende de unidades discretas de la herencia, llamado genes.1

Los rasgos autosómicos se asocian con un único gen en un autosoma (cromosoma no sexual). Se les llama "dominante" porque un solo ejemplar heredado de cualquiera de los padres es suficiente para causar la aparición de este rasgo. A menudo, esto significa que uno de los padres también debe tener la misma característica, a menos que ésta haya aparecido debido a una nueva mutación. Ejemplos de autosómica: rasgo dominante y los trastornos son la enfermedad de Huntington y la acondroplasia

Herencia autosómica recesiva

El carácter autosómico recesivo es un patrón de herencia de un rasgo, enfermedad o trastorno que se transmite a través de las familias. Para que un rasgo o enfermedad recesiva se manifieste, dos copias del gen (o los genes) responsable de la aparición de ese rasgo o desorden tienen que estar presentes en el genoma del individuo. Es decir, debe heredarse un cromosoma con el gen portador de esa característica tanto de la madre como del padre, dando como resultado un genotipo con dos copias del gen responsable de la aparición del rasgo. Se denomina herencia autosómica porque el gen se encuentra en un cromosoma autosómico: un cromosoma no sexual. Debido al hecho de que se necesitan dos copias de un gen para expresar la característica, muchas personas pueden, sin saberlo, ser portadores de una enfermedad. De un aspecto evolutivo, una enfermedad o rasgo recesivo puede permanecer oculto durante varias generaciones antes de mostrar el fenotipo. Ejemplos de trastornos autosómica recesiva son albinismofibrosis quísticaenfermedad de Tay-Sachs

Herencia ligada a X y ligada a Y

Los genes ligados a X se encuentran en el cromosoma sexual X y, tal como los genes autosómicos, tienen tipos recesivos y dominantes. Los desórdenes recesivos ligados a X raramente son vistos en mujeres y usualmente afectan únicamente a hombres. Esto es debido a que los hombres heredan su cromosoma X (y todos los genes ligados a X) de su madre. Los padres únicamente pasan su cromosoma Y a sus hijos varones, así que ningún rasgo ligado a X es pasado de padre a hijo. Las mujeres expresan desórdenes ligados a X cuando son homocigotas para el mismo y se convierten en portadoras cuando son heterocigotas.
Un desorden ligado a X es la Hemofilia A. La hemofilia es un desorden en el cual la sangre no coagula eficientemente debido a una deficiencia en el factor de coagulación VIII. Este desorden ganó reconocimiento a medida que viajó a través de familias reales, notablemente los descendientes de la Reina Victoria del Reino Unido. La herencia dominante ligada a X manifiesta el mismo fenotipo tanto en heterocigotas como en homocigotas. Como se trata de herencia ligada a X, habrá una falta de herencia hombre a hombre, lo que la hace distinguible de la herencia autosómica. Un ejemplo de un rasgo ligado a X es el síndrome de Coffin-Lowry, que es causado por una mutación en un gen que codifica para una proteína ribosomal. Esta mutación tiene como resultado anormalidades óseas y craneofaciales, retardo mental y baja estatura.
Los cromosomas X en las mujeres sufren un proceso conocido como inactivación de X, que es cuando uno de los dos cromosomas X en una mujer es casi completamente desactivado. Es importante que este proceso tenga lugar, ya que, de otra manera, las mujeres producirían el doble de las proteínas codificadas por genes en el cromosoma X. El mecanismo de inactivación de X ocurre durante la etapa embrionaria. En personas con desórdenes como trisomía X, en la cual el genotipo presenta tres cromosomas X, la inactivación de X desactivará todos los cromosomas X hasta que sólo quede uno activo. La inactivación de X no sólo se limita a las mujeres: hombres con el síndrome de Klinefelter, que tienen un cromosoma X extra, también sufrirán inactivación de X para tener sólo un cromosoma X completamente activo.
La herencia ligada a Y ocurre cuando un gen, rasgo o desorden se transfiere a través del cromosoma Y. Como los cromosomas Y sólo se encuentran en hombres, los rasgos ligados a Y sólo son transmitidos de padre a hijo. El factor determinante de testículos, que está localizado en el cromosoma Y, determina la masculinidad de los individuos. Además de la masculinidad heredada del cromosoma Y, no se conocen otras características ligadas a Y. El análisis genético poblacional del cromosoma Y permite conocer las líneas de ascendencia patrilineal (véase Adán cromosómico).
ola xd joskar Herencia ligada a X y ligada a Y Los genes ligados a X se encuentran en el cromosoma sexual X y, tal como los genes autosómicos, tienen tipos recesivos y dominantes. Los desórdenes recesivos ligados a X raramente son vistos en mujeres y usualmente afectan únicamente a hombres. Esto es debido a que los hombres heredan su cromosoma X (y todos los genes ligados a X) de su madre. Los padres únicamente pasan su cromosoma Y a sus hijos varones, así que ningún rasgo ligado a X es pasado de padre a hijo. Las mujeres expresan desórdenes ligados a X cuando son homocigotas para el mismo y se convierten en portadoras cuando son heterocigotas. Un desorden ligado a X es la Hemofilia A. La hemofilia es un desorden en el cual la sangre no coagula eficientemente debido a una deficiencia en el factor de coagulación VIII. Este desorden ganó reconocimiento a medida que viajó a través de familias reales, notablemente los descendientes de la Reina Victoria del Reino Unido. La herencia dominante ligada a X manifiesta el mismo fenotipo tanto en heterocigotas como en homocigotas. Como se trata de herencia ligada a X, habrá una falta de herencia hombre a hombre, lo que la hace distinguible de la herencia autosómica. Un ejemplo de un rasgo ligado a X es el síndrome de Coffin-Lowry, que es causado por una mutación en un gen que codifica para una proteína ribosomal. Esta mutación tiene como resultado anormalidades óseas y craneofaciales, retardo mental y baja estatura. Los cromosomas X en las mujeres sufren un proceso conocido como inactivación de X, que es cuando uno de los dos cromosomas X en una mujer es casi completamente desactivado. Es importante que este proceso tenga lugar, ya que, de otra manera, las mujeres producirían el doble de las proteínas codificadas por genes en el cromosoma X. El mecanismo de inactivación de X ocurre durante la etapa embrionaria. En personas con desórdenes como trisomía X, en la cual el genotipo presenta tres cromosomas X, la inactivación de X desactivará todos los cromosomas X hasta que sólo quede uno activo. La inactivación de X no sólo se limita a las mujeres: hombres con el síndrome de Klinefelter, que tienen un cromosoma X extra, también sufrirán inactivación de X para tener sólo un cromosoma X completamente activo. La herencia ligada a Y ocurre cuando un gen, rasgo o desorden se transfiere a través del cromosoma Y. Como los cromosomas Y sólo se encuentran en hombres, los rasgos ligados a Y sólo son transmitidos de padre a hijo. El factor determinante de testículos, que está localizado en el cromosoma Y, determina la masculinidad de los individuos. Además de la masculinidad heredada del cromosoma Y, no se conocen otras características ligadas a Y. El análisis genético poblacional del cromosoma Y permite conocer las líneas de ascendencia patrilineal (véase Adán cromosómico).